jueves, 9 de octubre de 2008
TRIOS PITAGORICOS*
Un trío pitagórico consiste de un triple de enteros positivos (a, b, c), de manera que [a.sup.2] + [b.sup.2] = [c.sup.2]. Si ocurre que DCM (a, b) = 1 = DCM (b, c) = DCM (a, c) decimos que (a, b, c) es un trío pitagórico primitivo. Esto último equivale a decir que DCM (a, b, c) = l. En otro artículo (Vol. 2, No. 2, 1997, págs. 172-178), se demostró que si m y n son enteros positivos tal que (i) m > n (ii) uno de los números m y n es par (el otro es impar) (iii) DCM (m, n) = 1 entonces el triple (a, b, c) definido por a = 2 m n, b = [m.sup.2] - [n.sup.2], c = [m.sup.2] + [n.sup.2] es un trío pitagórico primitivo. Observe que a es un número par y ambos b y c son números impares.
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario